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Recent results on two interacting particle systems on Z are summarized, the 
asymmetric simple exclusion process and the branching exclusion process. 

KEY WORDS: Exclusion process; branching exclusion process; Burgers 
equation; shocks; hydrodynamic limit; KPP equation. 

1. I N T R O D U C T I O N  

In this paper I consider two classes of interacting particle systems on the 
integers. They are briefly described as follows. At any time t particles are 
present at sites in Z, with at most one particle per site. After exponentially 
distributed random times with mean 1, particles attempt to execute simple 
random walks, with a particle at x attempting to jump to x +  1 with 
probability p and to x - 1  with probability q = 1 -  p. This jump occurs if 
the target site is unoccupied; otherwise, the particle remains at x until the 
next attempt, for which the "exponential clock" starts over again. We are 
assuming that all these random times are independent of one another. 
Thus, no two attempted jumps occur simultaneously. The assumption that 
times are exponentially distributed implies the memory-less property. Such 
a process is therefore Markov, with the future after time t not depending 
on behavior at times s < t if the state at t is already known. 

This class of interacting particle systems is called the exclusion process. 
We will assume the initial state ( t = 0 )  is given by appropriate com- 
binations of the product measures v~, 0 ~< c~ ~< 1. The measure v~ is defined 
so that at each site of Z there is a particle with probability c~ and these 
events are independent. We denote the process by t/,. As the behavior of t/, 
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for p = q =  1/2 is well understood, we restrict our attention here to the 
asymmetric case with p >  1/2. (The behavior for p <  1/2 is of course 
analogous.) A second class of particle systems arises if one also allows 
branching. As before, the interaction is described by exponential times 
involving occupied sites x and neighbors x + 1. If the target site x + 1 (or 
similarly, x -  1) is unoccupied, then the particle at x, while remaining at x, 
gives birth to a particle at x + 1 ( x - 1 ) .  We will assume that the initial 
state consists of particles at all sites x ~< 0 and no particles at x > 0. For  this 
class of particle systems, the branching exclusion process, the exponential 
random times associated with the random walk are assumed to occur at 
rate/3 > 0 and the exponential random times with branching at rate 1. We 
also restrict ourselves to the case where p = q = 1/2 for both the random 
walk and branching mechanisms. We denote this process by ~ , .  A general 
reference' for the exclusion process is ref. 1. The material covered here on 
the exclusion process is from refs. 2-7; its content is similar to that of ref. 6. 
The material on the branching exclusion process is from refs. 8 and 9. 

2. E X C L U S I O N  P R O C E S S  

The particle system ~t is said to be in equilibrium if ~t has the same 
distribution for all t. A distribution is translation-invariant if it remains the 
same under the translation x~--~x+ 1. It can be checked that v~ are 
equilibrium probability measures for the exclusion process qt. It is well 
known that they are the only such translation-invariant probability 
measures. It is natural to ask what behavior ensues as t ~ oe if t/t is started 
at a nonequilibrium state. 

Perhaps the most obvious choice of a nonequilibrium state is 

tto= Vp on 0, 1, 2,... 

=v;~ on - 1 ,  - 2 , . .  

where 0~<p,2~< 1. On the positive integers % has density p and on the 
negative integers density 2. Presumably some manner of mixing of densities 
occurs for t/t as t ~ oe. This is indeed the case for p = t/2, where in fact (1) 

tlt ~,v~p+;~l/2 as t ~ o o  (1) 

Here ow  means that over any finite subset A of ~, the restrictions of the 
distributions of t/, and v~p+;.)/2 to A become indistinguishable as t ~  ~ .  
(This is weak convergence in the appropriate topology.) 

In our setting with p > 1/2, the behavior of t/t turns out to be more 
complicated, as evidenced by the following resultJ 2) 
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T h e o r e m  1 : 

(a) If 2 >~ 1/2 and p ~< 1/2, then ~/t __,w YI/2. 

(b) If p>~ 1/2 and 2 + p >  1, then ~/,-.w vo" 
(c) I f 2 ~ < l / 2 a n d 2 + p < l ,  thenr / t~Wvx.  

Theorem 1 partitions the unit square {(2, p): 0 4 2 ,  p ~< 1 } into three basic 
regions: (a) the square of length 1/2 in the lower right-hand corner, where 
the limit is vl/2, and the regions (b) and (c) obtained by dividing the 
remaining area by the line segment between (0, 1) and (1/2, 1/2). One can 
show by substituting occupied sites for unoccupied sites and unoccupied 
sites for occupied sites, and by interchanging p and q, that the behavior 
given in (b) must imply that in (c), and vice versa. It is not easy to see, 
however, how the limiting densities 1/2, p, and 2 come about, and why 
these particular densities hold for the given ranges. Also note that no asser- 
tion is made in Theorem 1 regarding the asymptotic behavior for q~ if 
2 + p =  1 and 0 4 2 <  1/2 [the line segment between (0, 1) and (1/2, 1/2)]. 

A much clearer picture of the reasons for the behavior in (a)-(c) was 
given in refs. 3 and 4. Instead of considering the asymptotic behavior of ~/t 
in only the stationary coordinate system, one can translate at any fixed 
rate, and then examine qt under these linear translations. Presumably one 
should obtain as the limit v~ for appropriate choice of e. In fact, one 
obtains: 

Theorem 2. Suppose that either 2>~p or that x r  
( 1 - 2 - p ) t .  Then, 

~/,/~(- + x/e) w v~(,.x) as e --+ 0 (2) 

where u(t, x) satisfies 

with 

u, + ( p -  q)l-u(1 - u ) ] ,  -- 0 (3)  

u(O,x)=p if x~>0 

--2 if x < 0  (4) 

The limit in (2) states that if one is moving at rate x/t, then one sees in the 
limit a product measure with density u(t, x). The function u(t, x) will be the 
solution to the Burgers equation given in (3)-(4) (with the usual entropy 
conditions). For 2 < p ,  one needs to avoid the shock at x = ( p - q ) .  
(1 -  2 -  p). Rescaling such as in (2) has been applied increasingly frequently 
in the literature to a wide'range of processes. The basic idea is that (2) is a 
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"hydrodynamic" (macroscopic) limit of a microscopic model r/with certain 
dynamics. Under this rescaling, one obtains a limiting density u, which is to 
be thought of as representing some macroscopically observable quantity. In 
our case, u is of course the density of particles. 

It is not difficult to solve (3)-(4) using the method of characteristics. 
The special case with x = 0  will imply (a)-(c) of Theorem 1. Break the 
problem into case I, with 2>~p, and case II, with 2 <p .  In case I, the 
solution u(t, x) has no shocks because the characteristics xl = (p-q). 
( 1 -  2p)t and x2 = ( p - q ) ( 1 - 2 2 ) t  move apart with xl >x~.  Therefore, 
can be divided into three intervals with 

p for x>~(p-q)(1-2p)t 

u(t,x)=l/2-x/2t for (p-q)(1-22)t<<,x~(p-q)(1-2p)t 

2 for x~(p-q)(1-22)t  

(5) 

(the middle interval is linear in x). Note in particular that under scenario 
(a), x = 0 is contained in the middle interval, whereas under (b) and (c), 
x = 0  lies in the right, resp. left interval. Plugging x = 0  into (5), one 
obtains Theorem 1 under 2 >~ p. In case II, one obtains the solution 

u(t,x)=p for x>(p -q ) (1 -2 -p ) t  
(6) 

= 2  for x<(p-q)(1-2--p)t  

with a discontinuity at x = ( p - q ) ( 1 -  ;~-p)t. Under the two permissible 
scenarios (b) and (c) from Theorem 1, x = 0  is contained in the right, resp. 
left interval. Theorem 1 with )~ < p therefore follows from (6). The proof of 
Theorem 2 itself of course requires work. It is not difficult to show, 
however, that once one knows (2), then (3)-(4) must follow. 

Returning to Theorem 1, we recall the case 2 + p = 1 with 0 ~< 2 < 1/2, 
for which no assertion was made. The set lies on the boundaries of both 
regions (b) and (c), which have corresponding densities p and 2. It is 
therefore plausible that something unstable is occurring along this inter- 
face. Further support is provided by Theorem 2, which gives x = 0 as the 
site Of the shock between u -- p and u = 2. In fact, the following holds~5): 

T h e o r e m  3. Suppose that 2 + p = 1 and 0 < 2 < 1/2. Then, 

r/, w �89189 as t ~ o o  (7) 

In other words, Theorem 3 states that over any interval [ -  M, M]  ~ E, if t 
is large enough, then t/, resembles a mixture of v o and v;. In particular, 
unlike the case for regions (a)-(c), l im,~ ~ r/, is not ergodic. Note that the 
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sole remaining case, where p = 1 and 2 = 0, is easy to treat. Since p > 1/2, 
particles tend to drift to the right, and so it will be the case that except for 
a probability that is decreasing exponentially in x, all points to the right of 
x will be occupied and all points to the left of - x  unoccupied at a given t. 

The result in Theorem 3 brings to mind extensions in two possible 
directions. Presumably, the behavior at the shocks discussed in Theorem 2 
that run along x = ( p - q ) ( 1 - 2 - p ) t  with 2 < p  and 2 + p #  1 should be 
analogous to that given in (7) for 2 + p =  1. This has not yet been 
demonstrated. The proof of Theorem 3 uses reflection symmetries, which 
are affected by translation. One can also attempt to analyze the asymptotic 
behavior "at a shock" in more detail, without rescaling space. In this set- 
ting, is the shock still sharp ("of bounded width"), and where is it located? 
These questions are answered in ref. 7 in the special case where 2 = 0. One 
does indeed have a sharp shock, and its location is given by Brownian 
motion. The assumption 2 = 0 implies the existence of a leftmost particle at 
all times, with respect to which one can center and analyze the process. 

3. B R A N C H I N G  E X C L U S I O N  P R O C E S S  

Start the branching exclusion process ~ ,  with the initial state 

~ o ( x ) = 0  for x~>0 

= 1 for x < 0  (8) 

The rightmost particle ~X, is then well-defined for all t. We will be 
interested in examining the asymptotic behavior of ~X,. [Since we are 
assuming that p = q = 1/2, the bottom half of (8) could be omitted as long 
as there is a particle somewhere.] 

One can show that the number of empty sites to the left of ~X, remains 
bounded as t ~ ~ .  (More precisely, the configuration as seen from eX, 
defines a positive recurrent Markov process.) It is therefore not difficult to 
show that the asymptotic velocity of ~X t, 

V(fl)= lim E[~Xt]/t (9) 
t ~ o O  

exists for all/3 > 0. One can, if one wishes, omit the expected value E l .  ] in 
(9), since the pathwise limits of BXt/t also exist. Clearly, V(/~)~ ~ as 
/~ ~ ~ ;  we wish to know at what rate. Since random walk has variance/3, 
x ~  will be the right scaling. What is limp ~ ~ V(/3)/,,/~? 

To provide motivation, we recall the following result from ref. 8. 

T h e o r e m  4. As fl--, ~ ,  

P[E/3'/2x] ~ ~ , ]  ~ u(t, x)  (10) 

822/51/5 -6-9 
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where u(t, x) satisfies 

with 

ut=�89 (11) 

u(0, x ) = 0  for x>/0  
(12) 

= 1 for x < O  

( [ y ]  denotes the integer part of y.) 
The limit in (10) is in some ways analogous to that in (2) of 

Theorem 2. Space is scaled differently, however, and, as mentioned at the 
beginning of the section, occupation of different sites is strongly correlated, 
unlike the independence in (2). The macroscopic density u(t, x) satisfies the 
K P P  (Kolmogorov Petrovsky-Piscounov) equation (11) with initial data 
corresponding to (8). It is well known that the solution approaches a 
traveling wave w(x) moving at rate xf2: 

with 

u(t, x + m(t)) ~ w(x) uniformly in x as t ~ (13) 

dm(t)/dt ~ ~ as t ~ ~ (14) 

One has w(x)~O as x ~  ~ ,  and w(x) ~ 1 as x ~  - ~ .  
Returning to V(fl), it is now not difficult to guess the correct limit 

from Theorem 4 and (13)-(14) by inverting limits. In ref. 9 the following is 
demonstrated: 

T h e o r e m  5. V(fl)/x/- ~ ~ xf2 as fl--* ~ .  

One can ask about various possible extensions of Theorem 5. For 
instance, in the spirit of Theorem 4, how does ~t approximate u(t, x) as 
both t, fl ~ ~ ?  One can also generalize the random walk and branching 
rules for ~G, so that they are finite range, but not necessarily nearest 
neighbor, and show the appropriate analog of Theorem 5. 
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